
Memo 
Date: Friday, December 24, 2021 

Project: Comanche Station Groundwater Monitoring – Statistical Analysis 

To: Jennifer McCarter (PSCo) 

From: May Raad, M.Sc, PStat®, Principal Statistician (HDR) 

Subject: Response to Comanche Compliance Issues 

 

The following responses are provided by May Raad, Principal Statistician at HDR since 2006.  

May Raad has accredited designations of PStat® from the American Statistical Association and 
P.Stat.from the Statistical Society of Canada. May has over 30 years of experience providing 
statistical and data analysis and reporting to natural resources agencies, power and water 
utilities, transportation agencies, and government agencies. She has the exciting role of leading 
HDR’s statistics and data analysis practice in the engineering sector. Assessing and forecasting 
trends in water quality data is a highly specialized area in statistics. During the last decade, she 
has applied advanced statistical models and methodologies to analyze groundwater quality 
samples for power utilities and government agencies across North America. 

Question 1: 

§257.93(a) and §257.93(g)(1)- The statistical procedures must be “designed to ensure 
monitoring results that provide an accurate representation of groundwater quality at the 
background wells,” including that “the statistical method used to evaluate groundwater 
monitoring data shall be appropriate for the distribution of constituents.” More 
information is needed to determine if the distributional models used in calculation of the 
background threshold values (BTV) are appropriate. On page 1 in the “Attachment 1 to 
November 4, 2021 letter” under “Identify Best Fit” it states: “When data sets can be fit to 
multiple distribution models, the following hierarchy is applied for selecting the 
appropriate distribution: I. gamma, II. lognormal, III. normal” However, normality testing 
data were not submitted, nor was justification provided for this automated hierarchy of 
selecting gamma over normal (or vice-versa). Examples of objective data to justify 
selection of gamma over normal distribution model include comparative normality test 
scores and elevated skewness scores.  

Please submit normality and skewness testing results for each data set……  

Xcel is providing the normality and skewness testing results in the following excel files: 

1. ProUCL Output - GOF Tests.xlsx – provides all the GOF test results output by ProUCL 
software for data with and without (nondetects) NDs, which tests for normality, 



lognormality, and gamma, for each consistent of concern at the Comanche Bottom Ash 
Pond and Comanche Landfill. 

2. Skewness.xlsx – consists of tables of the sample sizes, level of censorship, distribution,  
and skewness levels for each constituent of concern at the Comanche Bottom Ash Pond 
and Comanche Landfill. 

The ProUCL Technical Guide (USEPA, 2015) defines skewness as a function of the sd of 
logged data. This measure of skewness is not only applied to lognormally distributed data sets 
but also other data sets with positive values. The skewness levels provided in the table below 
have been defined in Table 2-1 as well as Table A-7 of the ProUCL Technical Guide. 

 Table 1: Skewness as a Function of sd 

SD of logged data Skewness 
SD < 0.5 Symmetric to mild skewness 
0.5 <= SD < 1.0 Mild skewness to moderate skewness 
1.0 <= SD < 1.5 Moderate skewness to high skewness 
1.5 <= SD < 2.0 High skewness 
2.0 <= SD < 3.0 Very high skewness (moderate probability of outliers and/or multiple 

populations) 
SD >= 3.0 Extremely high skewness (high probability of outliers and/or multiple 

populations) 
 

…..and provide justification for the use of an automated hierarchy for selecting one 
distributional model over another apart from objective data. 

The hierarchy (i.e., I. gamma, II. lognormal, III. normal) applied for selecting the appropriate 
distribution to compute decision-making statistics (e.g., UPLs and UTLs) when data sets can be 
fit to multiple distribution models is based on the recommendations in the ProUCL Technical 
Guide. 

ProUCL outputs its statistical methods for comparison, academic, and research purposes, in the 
anticipation that it will help decision makers make more informative and defensible decisions. 

The use and applicability of a statistical method depend on: 

• Data size 
• Level of censorship 
• Data skewness 
• Data distribution 

The ProUCL Technical Guide emphasizes that it is well known in the literature that 
environmental data are often right-skewed and skewed distributions, such as the lognormal and 
gamma, are routinely used to model such data. In particular, the gamma model is commonly 
used to model environmental data. Gibbons and Coleman (2001, pp. 34–47) noted that the use 
of a gamma distribution is more appropriate than a normal distribution when variability and 
concentration are related, as in the case of many environmental constituents. Millard (2013) 



states some EPA guidance documents strongly recommend using a gamma distribution for 
environmental data rather than a lognormal model.1  

Practitioners tend to use the central limit theorem (CLT) or Student’s t-statistic (normal) based 
BTVs for samples of sizes 25-30 (large sample rule-of-thumb to use CLT). ProUCL Technical 
Guide states, “However, this rule-of-thumb does not apply to moderately skewed to highly 
skewed data sets, specifically when the sd of the log-transformed data starts exceeding 1”. The 
large sample requirement for following an approximate normal distribution increases with 
skewness.2  

 
1 Examples of such references in ProUCL as to the appropriateness or advantages of the gamma distribution can be 
read in the Executive Summary on page vi “The use of a parametric lognormal distribution on a lognormally 
distributed data set yields unstable impractically large UCLs values, especially when the standard deviation (sd) of 
the log-transformed data becomes greater than 1.0 and the data set is of small size less than 30-50. Many 
environmental data sets can be modeled by a gamma as well as a lognormal distribution. The use of a gamma 
distribution on gamma distributed data sets tends to yield UCL values of practical merit. Therefore, the use of gamma 
distribution based decision statistics such as UCLs, UPLs, and UTLs cannot be dismissed by stating that it is easier 
(than a gamma model) to use a lognormal model to compute these upper limits.”,  

Page 38: “It is further stated in Helsel (2012a) that ProUCL prefers the gamma distribution because it downplays 
outliers as compared to the lognormal. This argument can be turned around - in other words, one can say that the 
lognormal is preferred by practitioners who want to inflate the effect of the outlier. Setting this argument aside, we 
prefer the gamma distribution as it does not transform the variable so the results are in the same scale as the 
collected data set. As mentioned earlier, log-transformation does appear to be simpler but problems arise when 
practitioners are not aware of the pitfalls (e.g., Singh and Ananda 2002; Singh, Singh, and Iaci 2002) associated with 
the use of lognormal distribution.”, and;  

Page 138, “Furthermore, when using a gamma distribution to compute decision statistics such as a UCL of the mean, 
one does not have to transform the data and back-transform the resulting UCL into the original scale.” 

2 It is noted that even for skewed data sets, practitioners tend to use the CLT or Student's t-statistic based UCLs of 
mean for “large” sample sizes of 25-30 (rule-of-thumb to use CLT). However, this rule-of-thumb does not apply for 
moderately to highly skewed data sets, specifically when σ (standard deviation of the log-transformed data) starts 
exceeding 1. The large sample size requirement associated with the use of the CLT depends upon the skewness of 
the data distribution under consideration. The large sample requirement associated with CLT for the sample mean to 
follow an approximate normal distribution increases with the data skewness; and for highly skewed data sets, even 
samples of size greater than (>)100 may not be large enough for the sample mean to follow an approximate normal 
distribution. For moderately skewed to highly skewed environmental data sets, as expected, UCLs based on the CLT 
and the Student's t-statistic fail to provide the desired coverage of the population mean even when the sample sizes 
are as large as 100 or more. These facts have been verified in the published simulation experiments conducted on 
positively skewed data sets (e.g., Singh, Singh, and Engelhardt, 1997; Singh, Singh, and Iaci, 2002); some graphs 
showing the simulation results are provided in Appendix B.).” ProUCL, p. 1. 



Tables in Attachments 1a and 1b show that the gamma distributional model was selected 
for constituents when both the normal and gamma distributional models were only 
described concurrently as “best fit.” The resulting gamma-based BTVs selected for use 
were often significantly higher than the normal-based BTVs (e.g. gamma-Fluoride = 735 
mg/L vs. normal-Fluoride = 236 mg/L). 

It can be observed (in the tables provided) that when the skewness levels are ‘symmetric to mild 
skewness’ the gamma-based BTVs are very similar to the normal-based BTVs. As the 
skewness levels increase, then the gamma-based BTVs appear to be greater than the normal-
based BTVs.  

There was only one case where both the normal and gamma distributional models were only 
described concurrently as “best fit” and this was for fluoride at the Bottom Ash Pond.  

We did go back to the eight collected background samples at W-2A for fluoride for the Bottom 
Ash Pond because of EPA’s question regarding the fluoride UTL. The skewness level as 
defined by ProUCL is high at 1.73. As the skewness levels increase, then the gamma-based 
BTVs appear to be greater than the normal-based BTVs. With respect to the fluoride example, 
the differences between the Wilson-Hilferty (WH) and Hawkins-Wixley (HW) UTLs are larger 
than one would expect given that the transformed values follow an approximate normal 
distribution.  
 
From our experience, notable differences happen when there is an outlier in the dataset, or the 
dataset is highly skewed. No statistical outliers were observed in the preliminary data analysis 
for fluoride, which uses Dixon’s outlier test to identify outliers in the detected data. Upon further 
investigation of the data, we found that the laboratory reported value of 170 milligrams per litre 
(mg/l) sampled on December 2, 2020 was assigned a method detection limit (MDL) of 170 mg/l 
due to dilutions; however, every other date the MDL was much lower. This suggests that the lab 
reported fluoride from a 1000X dilution, which rendered the MDL high on that date. This 
concentration was the maximum value for fluoride in the background dataset. After further 
review and discussions with the laboratory, we recommend excluding the value of 170 mg/l from 
the dataset as the dilution was too high to yield a reliable result. Using our methodology for 
sample size less than eight, we recommend nonparametric methods, hence the maximum 
detected value is used to represent the UPL and UTL for fluoride, i.e., 99 mg/l  (USEPA. 1992). 
 

These large differences become even more concerning considering the higher level of 
uncertainty surrounding the performance of the gamma-based BTVs used in ProUCL 
versus the highly-studied and well-documented normal upper prediction limit (UPL) and 
upper tolerance limit (UTL) (e.g. p.108 in ProUCL Version 5.1.002 Technical Guide - 
“Note: It should be pointed out that the performance of gamma UTLs and gamma UPLs 
based upon these HW and WH approximations is not well-studied and documented”). 

Even though methods exist to compute 95% (upper confidence limits) UCLs of the mean, upper 
prediction limits (UPLs) and upper tolerance limits (UTLs) based upon gamma distributed data 
sets, those methods have not become popular due to the computational complexity and/or the 
lack of availability in commercial software packages. Despite the better performance (in terms of 
coverage and stability) of the decision-making statistics based upon a gamma distribution, some 



practitioners tend to dismiss the use of gamma distribution-based decision statistics by not 
acknowledging them and/or stating that the use of a lognormal distribution is easier to compute 
the various upper limits. However, one should not compromise the accuracy and defensibility of 
estimates and decision statistics by using easier methods. Computation of defensible estimates 
and decision statistics taking the sample size and data skewness into consideration is always 
recommended (USEPA 2015). 

The ProUCL Technical Guide references studies that have demonstrated that UCLs based upon 
the CLT and Student's t statistics fail to provide the desired 95% coverage of the population 
mean for small sample sizes, even ones as large as 100, for skewed distributions. Moreover, 
the properties of the CLT and Student’s t-statistic are unknown when NDs with varying DLs are 
present in a dataset. The use of parametric lognormal distribution on a lognormally distributed 
data set tend to yield unstable impractically large UCL values, especially when the sd of the log-
transformed data is greater than 1 and the data set is of small size (less than 30 to 50). Similar 
patterns are expected in the behavior and properties of the various other upper limits (e.g., 
UTLs, UPLs) used in the decision-making processes of the USEPA. 

Generally, the use of a gamma distribution on gamma distributed data sets yields reliable and 
stable UCL values of practical merit. Therefore, the use of gamma distribution-based decision 
statistics such as UCLs, UPLs, and UTLs should not be dismissed just because it is easier to 
use a lognormal or normal model. The gamma distribution is suggested for computing BTV 
estimates since it accounts for data skewness. The advantages of computing the gamma 
distribution-based decision statistics are discussed throughout the ProUCL Technical Guide.  

ProUCL has incorporated BTVs based upon normal approximation to the gamma distribution, 
which are based upon Wilson-Hilferty (WH) and Hawkins-Wixley (HW) approximations. Other 
references to this methodology can be found in recent literature. Krishnamoorthy, Mathew, and 
Mukherjee (2008) present simple methods for finding two-parameter gamma tolerance limits 
and prediction limits, which are essentially normal-based methods applied to cube-root-
transformed samples. Krishnamoorthy and Wang (2016) describe how to find confidence limits 
for the mean and an upper percentile, and upper prediction limits for the mean of a future 
sample from a gamma distribution for censored and uncensored cases. Monte Carlo simulation 
studies indicate that the methods are accurate for estimating the mean and percentile and for 
predicting the mean of a future sample as long as the percentage of NDs is not too large. 



Question 2 

§257.93(g)(4)- The selection of a prediction limit method or tolerance limit method in 
detection or assessment monitoring “..shall be such that this approach is at least as 
effective as any other approach in this section for evaluating groundwater data.” The 
practice of “averaging of the results over the multiple methods” to create a “pooled 
estimate” of the background parameter (as described on page 1 of the “Attachment 1 to 
November 4, 2021 letter” and Attachments 1a and 1b) does not meet the requirement of 
this rule. 

For example, Attachment 1a shows two distinct UTLs for fluoride (WH-UTL = 614 mg/L; 
HW-UTL = 857 mg/L), with the final BTV for fluoride as an arithmetic average of the two 
(i.e. 735 mg/L). The final, averaged UTL of 735 mg/L is 121 mg/L higher than the WH-UTL 
of 614 mg/L. Therefore, if the final, averaged UTL of 735 mg/L is used as a background-
based groundwater protection standard (GPS) in assessment it would have lower 
statistical power to detect upward changes in fluoride as compared to use of the WH-UTL 
of 614 mg/L, and thus the averaged UTL would not be “as effective” as the WH-UTL. 

Additionally, on top of the uncertainty regarding performance of gamma UTLs described 
in 1) above, the performance of “pooled” or “averaged” gamma UTLs is even more 
unstudied, uncertain and thus inappropriate. 

HDR has provided a pooled methodology in situations where multiple models are provided by 
ProUCL. The averaging of competing models used to estimate the same statistic corrects for 
bias inherent in each model. Our approach is at least as effective as the standards required by 
the CCR Rule and §257.93(g)(4).  
 
The CCR Final Rule documented that a sample of at least eight is sufficient (see discussion on 
page 21401; Volume 80 of the Federal Register). A sample size of eight does provide data from 
which a sample variance and statistical results can be produced; however, it does not 
technically provide for an unbiased representation of the true underlying distribution of 
constituent concentrations at a site.  The averaging of models or expert opinions has been 
shown to produce superior results in disciplines such as economics (Ouchi, F., 2004), statistics 
(Lavancier and Rochet, 2013) and data mining and machine learning (Nisbet, Elder, Miner, 
2009; Giovanni, Elder, 2010). HDR recommends this approach to reduce the chance of any one 
method, incorrectly chosen due to too small a sample, producing highly biased estimates.  
 
Please note that the intention of averaging is not to bias an estimate such as a UPL or UTL in 
any one direction. It is direction ‘indifferent’ and over all constituents and samples using this 
approach, the chances of average higher error rates in the statistics are lowered.  
 
The Wilson-Hilferty (WH) and Hawkins-Wixley (HW) methods to estimate UPLs or UTLs for 
gamma distributions have been well-studied. As recently as 2021, these methods are being 
used to update the guidance manual “Defining, Establishing, and Verifying Reference Intervals 
in the Clinical Laboratory Approved Guideline – Third Edition, EP28-A3C”.3  

 
3 HDR contacted Dr. Douglas Hawkins (key author of the HW method) on December 16, 2021 to inquire the usage of 
his methodology described in his and R. A. Wixley’s 1986 paper. He indicated the working group (in which he is a 
member) organized to update the CLSI guidelines from version EP-28 to EP44 are incorporating both WH and HW 
power transformations to aid in developing limits for reference intervals.  



 
The basis of the two methods is a power transformation to transform the data to follow a normal 
distribution. Once normalized, the formula for UPL or UTL uses the same formula as what one 
would use under the well-studied normal distribution assumptions to estimate a UPL or UTL, 
that is, the sample average plus the K tolerance factor multiplied by the standard error of the 
sample. The output from the calculation is then transformed back to the original scale using the 
inverse of the power transformation.  
 
The WH method uses the cube root (1/3) power transformation and the HW use the fourth root 
transformation (1/4). Both transformations perform well to model a normal distribution 
(Krishnamoorthy, Mathew & Mukherjee 2008). To choose one over the other based on small 
sample sizes taken over 1 to 2 years may be a risk and does not necessarily provide certainty 
one expects. The averaging of the competing methods offered in ProUCL is done to mitigate 
that uncertainty. 
 
Regarding the question about which UTL produced by the WH and HW methods has more 
power, we note that  the UTLs for assessment monitoring are used as proxy GPS if no MCLs 
are published or if the GPS are higher than their respective MCLs. As recommended by the 
Unified Guidance (USEPA 2009), the UTLs should be treated as fixed numbers and not 
statistical tests. This means that statistical power does not factor into the selection of the UTL. 
The Unified Guidance (UG) states the following: 
 

“Existing background levels may also exceed a fixed GPS.4 In these cases, a 
background standard can be constructed using an upper tolerance interval on 
background with 95% confidence and 95% coverage. The standard will then represent a 
reasonable upper bound on background and an achievable target for compliance and 
remediation testing.”  

 
(We did provide our methodology to address sufficient power to detect an SSI using UPLs in our 
previous response based on a site-wide false positive rate of 10% and verification samples. 
(November 5, 2021). ) 
 
Historically, practitioners would simply use multiples of the background average to denote a 
GPS (e.g., two times the sample average). The UG addresses this approach in this manner: 
 

“However, this approach may not fully account for natural variation in background levels 
and lead to higher than expected false positive rates. If the GPS were to be set at the 
historical background sample mean, even higher false positive rates would occur during 
compliance monitoring, and demonstrating corrective action compliance becomes 
almost impossible.” 

 
The UG continues on the merits of using the background sample and variability to identify a 
realistic proxy for the GPS.  
 

“…, an upper tolerance limit based on both background sample size and sample 
variability is recommended for identifying the background GPS at a suitably high enough 
level above current background to allow for reversal of the test hypotheses. Although a 

 
4 Note that the UG uses GWPS in the exact quotes. For consistency, Xcel used GPS in place of GWPS to 
match language in Question 1. 



somewhat arbitrary choice, a GPS based on this method allows for a variety of 
confidence interval tests”. 

 
In assessment monitoring and corrective action monitoring, the statistical testing by means of 
confidence intervals tests comes into play when downgradient samples are used to produce 
lower confidence limits (LCL) (assessment monitoring) or upper confidence limits (UCL) 
(corrective action compliance). These tests are one sample tests, or in other words, testing if a 
sample statistic is less than a fixed number (i.e., the GPS) while accounting for the variability in 
the sample.  
 
Statistical power is increased in these tests with every round of sampling, as the monitoring 
dataset increases in size.  
 
As the UG has indicated, the selection of the background GPS may seem arbitrary but using an 
appropriate distribution that best describes natural variability of concentrations and provides 
upper limit estimates will yield a practical GPS that has the chance of correctly flagging SSLs in 
assessment monitoring and achieving compliance in corrective action.  
 
Our averaging of the two potential UTLs (WH UTL and HW UTL) is done precisely to provide a 
practical GPS that describes upper limits of variability bounded by these methods. 
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